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Why probabilistic analysis
Section 1



Problem Definition

LASH terminal at the Port of San Francisco (1970)

Temporary slope, cohesive soil, good laboratory data, Fs = 1.17

Duncan (2000)

The slope was primarily designed for Fs = 1.17 Failed!!

Post-failure probabilistic stability analysis Original Pf = 18%!!



Problem definition
Deterministic Factor of safety (Fs): Limit equilibrium method, finite element method

Stability charts are routinely used to calculate deterministic factor of safety in simple slopes

Taylor (1937): published stability charts for cohesive and cohesive-frictional soil slopes

Bathurst and Jones (2001): published design charts for reinforced slopes using two-part 

wedge method

Taylor (1937)Bathurst and Jones (2001)



Deterministic factor of safety for design

• Several design charts for factor 

of safety (FS)

• Input values: slope geometry 

and best estimates of soil 

properties

• Deterministic FS is not enough 

for design: unable to account 

for uncertainties



Geotechnical uncertainties

• Inherent spatial variability of soil 

properties

• Scarcity of representative data

• Changing environmental conditions

• Unexpected failure mechanisms

• Model uncertainty

• Human error in design and 

construction



Reluctance in adopting probabilistic 
analysis

• Limited engineers’ training in probability theory

• Engineers are more comfortable with deterministic analysis

• Common misconception that probabilistic analysis requires 

significantly more data, time, and effort

• Software availability (spatial variability)

• Probabilistic analysis is not a replacement for deterministic 

analysis



Coefficient of Variation

• Coefficient of variation (COV) 

shows the level of uncertainty in 

input parameters

• COV = standard deviation / mean

• e.g. COV of su is 10-55%



Importance of COV

• Probability of failure (PF) is 

the area under the 

distribution of FS for FS < 1

• Slope A with a higher Mean 

FS is less safe (has higher 

PF) because it has higher 

COV

Slope B

Mean FS  = 

1.5

COV = 0.15

Slope A

Mean FS  = 

1.7

COV = 0.3



Deterministic vs. Probabilistic

Parameter Distribution

…
Parameter = 2

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐹𝑎𝑖𝑙𝑖𝑢𝑟𝑒 =
# 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝐹𝑆 < 1

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠



Acceptable pf values

Silva et al. (2008)



Simple unreinforced slopes



Stability charts for cohesive slopes (su)

Probability of failure:
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Probability Theory:

Taylor’s equation:
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Advantage: Probability of failure can be calculated directly using Fs and spread in su and g

Probability theory and Taylor’s equation were used to develop a unique equation

Javankhoshdel and Bathurst (2014)
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Stability charts for cohesive slopes (su)

COVsu: 0.1 to 0.5    

COVg < 0.1

Javankhoshdel and Bathurst (2014)

Probabilistic slope stability chart for cohesive soil slope



Stability charts for cohesive-frictional 
slopes (c-f)
• Monte Carlo simulation 

• 6 different charts for:

20 ̊ ≤ f ≤ 45 ̊

• Fs and Pf in one chart

• COVc = 0.5 and 0.1

COVf = 0.2 and 0.1

Javankhoshdel and Bathurst (2014)



High values of Probability of failure

Cross-correlation (r): Considered to incorporate the dependency between input parameters

c

f
-1 < r < 0

c or f or su

g
0 < r < 1



Sampling of parameters

Cohesion Friction Angle



Sampling of parameters

Cohesion Friction Angle



Cross-correlation between soil parameters

• Cross-correlation (r): 

Considered to incorporate the 

dependency between input 

parameters

• -1.0 ≤ r ≤ 1.0

• A negative r is recommended 

between c and f

• A positive r is recommended 

between c and g; f and g



The effect of cross-correlation

Combination 1: Unrealistic ρ

c & f = +0.5

c & g = -0.5

f & g = -0.5

Combination 2: Realistic ρ

c & f = -0.5

c & g = +0.5

f & g = +0.5

Comb1

Comb2



Cross-correlation between su and g

Probability of failure:

Javankhoshdel and Bathurst (2014)
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Probability of failure:

Javankhoshdel and Bathurst (2016a)

r = 0

r ≠ 0



Cross-correlation between su and g

Fs = 1.2

COVsu =0.1

Pf = 10%

Pf = 0.1%

COVg = 0.1

Javankhoshdel and Bathurst (2016a)

Influence of cross-correlation between su and g on probability of failure



Stability chart for cohesive-frictional soils (c-f)
• Monte Carlo simulation 

• 6 different charts for:

20 ̊ ≤ f ≤ 45 ̊

• Fs and Pf in one chart

• COVc = 0.5 

COVf = 0.2

COVg = 0.1

• Maximum practical values of cross-

correlation

r1 = -0.7 and r2 = r3 = +0.7

Javankhoshdel and Bathurst (2016a)



Stability chart for cohesive-frictional 
soils(c-f)

• Example for the slope angle of 
45 degrees

• The factor of safety can be 
linearly interpolated with 
friction angle to sufficient 
practical accuracy

• The logarithm of the 
corresponding probability of 
failure also varies smoothly 
with friction angle



Simple reinforced slopes



Deterministic analysis of reinforced slopes

External failure

Internal failure

c = 0



Fs

Fs

(Lmin, Tmin)

Deterministic analysis of reinforced slopes



Effect of slope angle

Effect of number of reinforcement layers

External failure
(PRSS software)

Fs = 1.3   (max)Pf = 14%

Fs = 1.3     (max)Pf = 14%

COVf = 0.2

COVg = 0.1

COVT = 0.15

Probabilistic analysis of reinforced slopes

Javankhoshdel and Bathurst (2016b)



Probabilistic slope stability design chart for reinforced slopes with external failure

ff = tan-1(tan(f/Fs))

Pf = 0.2%

f = 36o Fs = 2 

0.2

ff = 20o 

Probabilistic analysis of reinforced slopes

Javankhoshdel and Bathurst (2016b)



Effect of slope angle

Effect of number of reinforcement layers

Internal failure
(PRSS software)

Fs = 1.2

b = 45 ̊

b = 76 ̊

(max)Pf = 16%

(max)Pf = 10%

Probabilistic analysis of reinforced slopes

Javankhoshdel and Bathurst (2016b)



Probabilistic slope stability design chart for reinforced slopes with internal failure

Pf ≤ 0.01%

b = 45 ̊

Pf ≤ 1%

Probabilistic analysis of reinforced slopes

Javankhoshdel and Bathurst (2016b)



Cross-correlation between strength parameters
There is no cross-correlation effect for external failure : Fs = tanf/tanb

r = 0

Pf = 0.1%

r = 0.7 

Pf = 0.01%

Influence of cross-correlation between f and g on probability of failure for internal failure

Pf ≤ 0.01%

Pf ≤ 1%

Javankhoshdel and Bathurst (2016b)



ff = 30o Fs = 2.2      

Pf = 0.3%     Pf = 0.002%

Comparison between the probability of failure of external and internal failure mechanism

0.002

0.3% b = 45 ̊

Probabilistic analysis of reinforced slopes



Simple Probabilistic Slope 
Stability Analysis in Slide2
Section 2



Probabilistic Slope Stability
Assign 

probability 
distributions to 

properties

Generate n 
samples for each 

property

Calculate FS for 
each simulation

Calculate PF

Lower bound = Mean – Rel. Min

Upper bound = Mean + Rel. Max



Common distributions

Normal

• Most widely used

• Symmetrical

Lognormal

• Only positive values due to 

physical aspects of problem

• Positively skewed distribution 

with large spike near zero



Other distributions
Beta distributionExponential distribution Gamma distribution

Triangular distribution Uniform distribution



The 3𝜎 rule 

99.74% of all values of a 

normally distributed variable fall 

within plus or minus three 

standard deviations of the 

average



The 3𝜎 rule 

Can be used to estimate a value of standard 

deviation by first estimating the highest and 

lowest conceivable values (HCV, LCV) of a 

parameter and then dividing the difference 

by 6:

𝜎 =
𝐻𝐶𝑉 − 𝐿𝐶𝑉

6



Assign 
probability 

distributions to 
properties

Generate n 
samples for each 

property

Calculate FS for 
each simulation

Calculate PF

Probabilistic slope stability



Assign 
probability 

distributions to 
properties

Generate n 
samples for each 

property

Calculate FS for 
each simulation

Calculate PF

Probabilistic slope stability



Monte Carlo vs. Latin Hypercube

Monte Carlo Latin Hypercube

Requires fewer 

samples to give 

accuracy similar 

to Monte Carlo 

method



Number of samples

1) Using Formulas

n = number of Monte Carlo samples

m = number of random variables

d = normal standard deviate

ε = level of confidence

2) Sensitivity analysis

𝑛 =
(𝑑2)

4 1 − 𝜀 2

𝑚



Assign 
probability 

distributions to 
properties

Generate n 
samples for each 

property

Calculate FS for 
each simulation

Calculate PF

Probabilistic slope stability

Parameter Distribution

…



Assign 
probability 

distributions to 
properties

Generate n 
samples for each 

property

Calculate FS for 
each simulation

Calculate PF

Probabilistic slope stability

𝑃𝐹 =
# 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝐹𝑆 < 1

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠



Comparison to literature

f = 30 ̊

Slope angle (a) = 60 ̊

mc/(mgHtanmf) = 0.2

COVc = 0.5 

COVf = 0.2

FS = 1.3

PF ≈ 25% (using chart)

FS = 1.33

PF = 23.45 %   (using Slide2)



Simple Examples with Slide2



Example 1: Reinforced retaining wall



Assign 
probability 

distributions 
to properties

Define 
correlation

Generate n 
samples for 

each 
property

Calculate FS 
for each 

simulation
Calculate PF

Probabilistic slope stability





Probabilistic in Tunneling
Section 3



Probabilistic Analysis in RS2 
(Tunneling example)



Overview

• In RS2 you can perform a probabilistic analysis to determine the effect 
of uncertainty or variability of input parameters, on the results of the finite 
element analysis.

• Three sampling methods available:
• Point Estimate

• Monte Carlo

• Latin Hypercube

• The following model properties can be defined as random variables
• Material Properties

• Joint Properties

• Field Stress



Point Estimate Method

• The Point Estimate Method is a simplified method of generating 

random input variables based on Rosenblueth’s point estimate 

method. 

• In this method, two "point estimates" are made for each random 

variable at fixed values of one standard deviation on either side of 

the mean (mean + standard deviation, mean - standard deviation). 

• The finite element analysis is carried out for each possible 

combination of point estimates. This produces 2m solutions, 

where m is the number of random variables involved.



Point Estimate Method

• In the context of geotechnical finite element analysis, the 
Rosenblueth point estimate method of probabilistic analysis is 
suitable for problems involving only a few random variables (e.g. 2 
to 6). 

• For larger numbers of random variables (e.g. greater than 10) the 
computation time and output file storage requirements may become 
prohibitive. This will depend on the size and nature of the problem 
being computed. 

• For problems involving more than about 10 random variables, 
the Monte Carlo or Latin Hypercube methods are recommended.



Error Plot

• The Error Plot option allows you 

to plot the mean and standard 

deviation of data along 

any material query after a 

Probabilistic Analysis.

• The central curve plots the mean 

data values along the query, and 

the height of the vertical bars 

indicate plus / minus one standard 

deviation from the mean values.



Show Yield Zones
The Show Yield Zones option will highlight all 

yielded finite elements after a probabilistic 

analysis.

• All yielded finite elements from all 

component files of the probabilistic 

analysis will be highlighted (i.e. if an 

element failed during any run of the 

probabilistic analysis it will be 

highlighted).

• The shading of the elements indicates 

the probability of failure of the elements 

(darker shading indicates higher 

probability of failure).



Underground Tunnel



Statistical Results – Sigma 1

Base File Values Mean Values



Statistical Results – Sigma 1

Standard Deviation Values Coefficient of Variation



Show Model Yield Zones

• The darkest color indicates elements that 

fail in every model.

• Lighter colors indicate elements that are 

less likely to fail. 

• Plot is useful when trying to determine the 

extent of possible failure when designing 

rock bolt support, for example.

• The shading of the yield zones can be 

customized in the Show Yield Options 

dialog in the Statistics menu.



Total Displacement Error Plot

• Plot shows mean displacement 

along the bottom of the tunnel 

with error bars indicating on 

standard deviation of 

displacement.

• The error plot indicates the range 

of possible floor displacements 

that can be expected for the given 

uncertainty in material properties.



Spatial variability analysis
Section 3



Spatial variability of soil strength parameters

Figure a) Figure b)

x x

zz

mx mx

Mean value
Mean value

Figure a) The soil property is perfectly correlated throughout the soil profile  (statically uniform)

Figure b) Two samples taken from close locations have highly correlated properties while as the 

distance separating the samples increases the correlation decreases

Spatial correlation length (q): Distance in which soil properties are highly correlated

Highly correlated

q

q

Possible value x. 

Same at all points

Random variability 

about mean. varies 

from point to point



Spatial variability of soil properties

Parameter X is defined by location vector and the magnitude of the parameter

X at any location ua is a random variable

Fenton and Griffiths (2008):

1) 2D exponentially decaying (Markov) model

2) 2D separable (1Dx1D) Markov model

3) 2D separable Gaussian decaying model

4) 2D isotropic fractional Gaussian noise model

5) 2D separable fractional Gaussian noise model

Shen (2012)
El-Ramly(2001)



Random field theory

El-Ramly (2001)

Local average subdivision method:

Variance reduction method

The variance reduction function is a measure of the reduction in the point variance under 

spatial average.

Limiting equilibrium failures of slopes depend upon the average strength across 

the failure surface. 



Spatial variability of soil strength parameters

Effect of spatial variability of soil properties on Pf

Probabilistic charts: Spatial correlation length of infinity 

Probabilistic charts

Sampling distance
DL (m)

Javankhoshdel and Bathurst (2014)

ΔL = 2θ

1D spatial variability 



Surface Altering Optimization 
technique (SAO)



General Overview

• Surface Optimization: is a powerful tool to yield lower factors of 

safety by optimizing geometry of a given non-circular surface

✓ surface can be: 1) output of a non-circular search method

2) user-define

• Monte Carlo random-walk has been the mostly used 

optimization method in practice (Greco 1996).

• Surface Altering Optimization is a new alternative approach which is 

based on BOBYQA,  a derivative-free nonlinear optimization method 

developed by Powell (2009).



Problem Statement

• Given a set of points describing surface, we are interested in moving surface points to 

achieve the minimum FS



There are two iterative steps to alter surface with the goal of 

minimizing FS:

1) Relocating end points

2) Adjusting y-ordinates of points

between the two ends

Surface Altering Optimization



Surface Altering Optimization

• Each step, uses BOBYQA to minimize FS

• BOBYQA is a constrained derivative-free non-linear 

optimization technique based on trust-region approach

• In general, this approach requires significantly smaller number 

of function evaluations compared to random walk



Surface Altering Optimization (SAO)

• SAO can be combined with all the search methods

• SAO is a powerful tool to yield lower factors of safety by 

modifying geometry of a given surface

• SAO is based on a sequence of transformations applied to the 

geometry of the input surface as a whole



2D Spatial variability



Can we be even more realistic?

Parameter Distribution

…

Single Random Variable (SRV) Approach



Comparison of samples
SRV Spatial Variability

Simulation #2

Simulation #1



}
However, it is unlikely that a 

cohesion of 0.7 would change 

suddenly to 3.3 in nature.

Variability within each simulation



Correlation Length

• Correlation Length, ϴ is the distance (in metres for example) 

over which the values of a random variable will be significantly 

correlated, or similar.



Correlation Length Visualization

Cohesion



Correlation Length Visualization

ϴ = 1.0 m ϴ = 20.0 m

130 m

50 m

Deterministic

ϴ = ∞

SRV: Sim. 1/1000

c = 2

c = 2
c = 1.2

c = 1.2

c = 0.5

1 m

c = 2

20 m

c = 3 c = 1

50 m

Cohesion Parameters:

Mean: 2 kPa

Standard deviation: 0.5 kPa



Field Generation

Random fields are 

generated using the 

Local Average 

Subdivision (LAS) 

method



Field Generation

Random fields are 

generated using the 

Local Average 

Subdivision (LAS) 

method



Results: Simulation 1/1000

Random Limit Equilibrium Method (RLEM)



Results: Simulation 1/1000



Deterministic to Probabilistic to Spatial

Parameter Distribution

…

Parameter = 2

…
Parameter Distribution

Deterministic analysis Single Random Variable approach (SRV) Random Limit Equilibrium Method (RLEM)



Spatial variability in Slide2 2018
Section 5



Assign 
probability 

distributions 
to properties

Define 
correlation 
length per 
material

Generate n 
fields

Calculate FS 
for each 

simulation
Calculate PF

Spatial Variability Analysis



Assign 
probability 

distributions 
to properties

Define 
correlation 
length per 
material

Generate n 
fields

Calculate FS 
for each 

simulation
Calculate PF

Spatial Variability Analysis



Measuring Correlation Length

• CPT / SPT data

• Well-established method of 

measuring correlation length

• More advanced methods 

use Bayes to make up for 

insufficient data

Tip resistance data from CPT. The vertical correlation 

length calculated for this case was 0.86m. 



Correlation Length from Literature



Assign 
probability 

distributions 
to properties

Define 
correlation 
length per 
material

Generate n 
fields

Calculate FS 
for each 

simulation
Calculate PF

Spatial Variability Analysis

…



Assign 
probability 

distributions 
to properties

Define 
correlation 
length per 
material

Generate n 
fields

Calculate FS 
for each 

simulation
Calculate PF

Spatial Variability Analysis

𝑃𝐹 =
# 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝐹𝑆 < 1

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠

Random Limit Equilibrium Method (RLEM)



Spatial variability in practice



Method Model Publication Year

1D spatial 

variability

James Bay dyke H. El-Ramly, 

N.R. Morgenstern

D.M. Cruden

2002

1D spatial 

variability

Sugar Creek 

embankment

S.E. Cho 2007

RFEM Simple slopes J. Huang 

D.V. Griffiths

G.A. Fenton

2010

RLEM Simple Slopes Sina Javankhoshdel

N. Luo

R.J. Bathurst

2017

RLEM Mount Polley dam Brigid Cami

Sina Javankhoshdel

R.J. Bathurst

2017

Current spatial methods



1D Spatial variability

• Critical slip surface (length of L) is 
divided into equal segments

DL = spatial correlation length

• For each segment one sample is 
assigned from the distribution curve 
of the parameter

• There is only one spatial correlation 
length (inaccurate), the same for all 
materials

• The fastest method, the least 
accuracy

Parameter Distribution



1D Spatial variability: James Bay dyke



Random Finite Element Method (RFEM)

• Spatial field is created on a finite element 
mesh using LAS method

• Shear Strength Reduction (SSR) is used 
to calculate FS (deterministic part is 
independent from probabilistic part)

• Gravity turn-on method is used to 
calculate PF (fail and not fail with no Mean 
FS)

• The output will be Det. FS from SSR and 
PF from Gravity turn-on

• Speed problem, cannot handle complex 
geometries, cannot handle very small 
mesh sizes (convergence problem)



Random Limit Equilibrium Method (RLEM)

• Spatial field is created on a mesh 
using LAS method

• FS is calculated using non-
circular LEM with optimization

• The output will be Det. FS, Mean 
FS and PF

• Any type of geometry can be 
considered 

• Very fast, can detect the same 
failure surface as RFEM, any 
mesh size can be modeled (no 
convergence problem)



RLEM vs. RFEM
Parameter Results

Factor of Safety 1.2

RFEM PF 10.5%

RLEM PF 14.5%



RLEM vs. RFEM: Computation time
5000 Monte Carlo simulations



Summary of current methods

Method Accuracy Speed
Complex 

Geometries

Problem-Free 

Convergence 

(Mesh)

1D Spatial ✔ ✔ N/A

RFEM ✔

RLEM (Slide2) ✔ ✔ ✔ ✔
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Spatial Examples with Slide2



Example 1: Mount Polley tailings dam

Method

GLE/No optimization

GLE/Monte Carlo (MC)

GLE/Surface Altering (SA)



Deterministic analysis

Optimization Factor of Safety

No optimization 1.35

Monte Carlo (MC) 1.26

Surface Altering (SA) 1.26

No optimization FS=1.35

Monte Carlo

FS=1.26

Surface Altering

FS=1.26



Verify with SSR (RS2)

SRF = 1.26FS = 1.26



Measuring spatial correlation length

• Correlation length was measured 

at nine different CPT locations.

• Usually there is not enough CPT 

data to measure the horizontal 

spatial correlation length.

• A vertical correlation length of 1m 

and a horizontal spatial 

correlation length of 400m was 

used.



Correlation length visualization

qH = 1 m, qV = 1000 mqH = 1000 m, qV = 1 m

q = 1 m q = 20 m



Results

Parameter/Opt. No Opt. MCO SAO

Det. FS 1.35 1.26 1.26

Mean FS 1.31 1.2 1.19

PF (%) 0 0.09 0.18

Simulation time (hours)* 1.5 22 4.5

*for 10,000 simulations



SSR

FS = 1.61

Example 3: Sugar Creek

Non-circular

FS = 1.59

Non-circular

FS = 1.59



Sugar Creek results

Method
PF

without Cross-Correlation

PF

with Cross-Correlation

SRV 3.24% 0.19%

RLEM 0.61% 0.01%

Deterministic FS: 1.59





Slide2 and RS2



Slide2 and RS2

Slide2 RS2



Spatial variability in Tunneling
Section 6



Spatial variability in Tunneling

• Huang et al (2017): Influence of spatial variability of soil Young's 

modulus on tunnel convergence in soft soils.

• Huang et al. (2015): Presenting that the longitudinal performance 

of shield tunnels in terms of differential settlement is significantly 

affected by the spatial variation of subgrade reaction coefficient in 

longitudinal direction.

• Mollon et al. (2011): Analyzing the face stability of a tunnel driven 

in anisotropic and nonhomogeneous soils by considering the 

spatial variability of soil shear strength.



Example 1: Case study: Huang et al. (2017)

• Influence of spatial variability of soil Young's modulus on tunnel 

convergence in soft soils.

• Field data have shown the fact that soil spatial variability could 

aggravate the uncertainty of tunnel convergence ΔD (a key 

indicator for serviceability and safety of tunnels).

• Among all soil properties, it is widely accepted that the Young’s 

modulus Es and Poisson's ratio ns are the dominant parameters 

which greatly affect deformations of soils and embedded geo-

structures, e.g. tunnel lining convergence



Problem definition

• Since the convergence of tunnel 
lining is regarded to be a significant 
indicator of tunnel deformational 
performance, we investigate the 
influence of scale of fluctuation 
(SOF) of the soil Young's modulus 
on the convergence of tunnel lining 
in layered anisotropic soft ground.

• Both the isotropic and layered 
anisotropic random field for soil 
Young’s modulus Es is simulated.



Longitudinal geological profile of Shanghai 
metro line



Tip resistance from representative CPT 
tests obtained at Shanghai



The Model



The Random field models



Results

d = 2 m d = 40 m

It is clear that ignoring the spatial variability of soil’s Young's modulus can leads to an underestimate 

of the tunnel convergence.



Results
It is clear that ignoring the spatial variability of soil’s Young's modulus can leads to an underestimate 

of the tunnel convergence.



Example 2: Tunnel random field 1 & 7



Example 2: Tunnel in Slide2 and RS2

Spatial field, discrete function, RS2:



Total Displacement: Field 1 & 7



Yielded element: Field 1 & 7



Reliability analysis of retaining 
walls
Section 7



Probabilistic analysis

Performance function:

Approximate method

P
ro

b
a

b
ili

ty

Factor of safetyFs=FFs=1

Griffiths et al. (2010): Divided probabilistic slope stability analysis into four major methods

1) Point Estimate Method (PEM)

2) First Order Second Moment Method (FOSM)

3) First Order Reliability Method (FORM)

4) Monte Carlo simulation (MC)

Probability of failure:

Fs : Deterministic factor of safety

Pf

Set of random variables

Probabilistic analysis:

,



Probabilistic methods of analysis

• Point Estimate Method (PEM): 

• Probability distribution for input random variables can be replaced by discrete probability distribution having 

only two values with two associated probability concentration 

• The mean value of Fs: 

• Standard deviation of Fs :

• Pi are weighting coefficients:  

• Reliability index can be calculated as:    

• Disadvantage: may lead to incorrect interpretation if performance function is highly nonlinear or the random 

variables are asymmetric



Probabilistic methods of analysis

First Order Second Moment (FOSM)

The mean and variance of the factor of safety are approximated by a first-order Taylor series expansion about the mean values of random 
variables 

Reliability index can be calculated as: 

Disadvantage: reliability index depends on how the performance function is formulated

First Order Reliability Method (FORM)

Hasofer and Lind proposed mapping the random variable X from actual space to a normalized space 

Reliability index is the minimum distance between the mean values and the limit state surface (g(x)=0)

It is assumed that the mean values of the random variables lie on the safe side of the performance function



Reliability of Simple linear limit states  

m mg = R –  Q

m
R

n

R
λ  = 

R

m
Q

n

Q
λ  = 

Q

R n

Q n

R
g 1

Q


= −



( )P(g < 0) = 1  β− 

m m

m m

R R
ln ln

Q Q

β = μ σ
 
 
 
 

Simple linear limit state function with one resistance term (Rm) and one load 

term (Qm):

Or
m

m

R
g = –  1

Q

m
s

m

R
F

Q
=

Most often, predicted (nominal) values of resistance (Rn) and load (Qn) used in limit

state design functions vary from measured values for soil-structure problems.

OFS

F
re

q
u

en
cy

g = R - Q
0

βσ

Failure 

region,

Pf

m = mean of g

s = standard deviation of g

b = reliability index

Pf = probability of failure

m



Reliability of Simple linear limit states 

n QR n

Q n n R

n R n Q n R n Q n n

2 2

Q λλ R

2 2

λ Q R λ

2 2 2 2 2 2 2
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 

Bathurst and Javankhoshdel and Allen (2016)





Reliability of Simple linear limit states 

n Q nR Q 0 − g 

The simple linear limit state design equation in the LRFD has the form:
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Bathurst, Javankhoshdel and Allen (2016)
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Reliability of Simple linear limit states 

Bathurst, Javankhoshdel (2016)

Sensitivity analysis using the closed-form solution and MC simulation



LRFD calibration for simple limit states 

Table 6.1 Bias statistics for example cases

Resistance (method) bias Load (method) bias

Case mR COVR rR mQ COVQ rQ

1 1.00 0.30 0.00 1.00 0.30 0.00

2 2.00 0.30 0.00 0.30 0.30 0.00

3 1.00 0.50 0.00 1.00 0.50 0.00

4 2.00 0.50 0.00 0.30 0.50 0.00

5 1.00 0.30 -0.70 1.00 0.30 -0.70

6 2.00 0.30 -0.70 0.30 0.30 -0.70

7 1.00 0.50 -0.70 1.00 0.50 -0.70

8 2.00 0.50 -0.70 0.30 0.50 -0.70

9 1.00 0.50 0.70 1.00 0.50 0.70

10 2.00 0.50 0.70 0.30 0.50 0.70

Bathurst et al. (2016)

Conservative

Accurate



LRFD calibration for simple limit states 

Bathurst et al. (2016)

Sensitivity analysis using the closed-form solution

Conservative

Accurate
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