

Herrenknecht Mining | Pioneering Underground Technologies

Mechanized Shaft & Raise Excavation Webinar

22nd January, 2020 – Patrick Rennkamp & Danny Harquail

Safety Share

Webinar | Mechanical Shaft Excavation - 22nd January 2020

- Introduction Herrenknecht and Mining
- Overview of Shaft Boring Machines and references
- Boxhole Back Reaming Developments
- Questions?

HERRENKNECHT IN SCHWANAU

Founded in 1977 Site area: 199,800 m²

18 Assembly workshops for different product applications Today around 4,600 employees worldwide, 2,000 in Schwanau & around 200 young people in training

Herrenknecht | Global

- 76 Locations: represented on all continents
- 4,100 Projects worldwide

Herrenknecht | Business Units

All Around Tunneling Solutions | Core Products for Traffic Tunneling

THE BRENNER BASE TUNNEL Lot 2-3 Mauls / Mules

TUEN MUN – CHEK LAP KOK LINK

All Around Tunneling Solutions | Core Products for Utility Tunnelling

Conventional D&B Shaft Sinking

https://www.youtube.com/watch?v=xpehTws0nUc

11

Herrenknecht Mining | Mechanical Shaft Boring Systems vs. Conventional Drill & Blast

	Mechanized	Drill & Blast
Excavation	Cutting Tools	Explosives
Mucking	Pneumatic / Slurry	Cactus Grab
Advance Rate	3-4 meter/day 1-2 meter/day	
Process	Continuous Cyclic	
Lining	Shotcrete/Cast in Place/Tubbing Shotcrete/Cast in Place/Tubb	
Hoisting	Bucket	Bucket

1872

MINING ENGINEERING HANDBOOK

Mechnical Cutting

- The basic rock cutting tools for mechanical excavation include:
 - Drag Cutter
 - Picks
 - Disc Cutters
 - Roller Cutters
 - Button Cutters

Fig. 22.1.1. Rock cutting techniques (after Roxborough and Rispin, 1973).

Herrenknecht. Pioneering Underground Technologies

13

The Full Face Blind Shaft Borer 1978, Robbins

- Self supporting machine (gripper systems)
- Full face excavation with disc cutterhead
- Chain and bucket conveyors as primary mucking system

14

Shaft Boring Machine, Robbins 1984

- Self supporting machine (gripper systems)
- Partial face excavation with disc cutter drum
 - Clam bucket as primary mucking system

- Shaft enlargement works
- Self supporting machine (gripper systems)
- Full face excavation with disc cutterhead
- Muck discharge through pre shaft
 ¹⁶

Herrenknecht Shaft Sinking Machine 1986

- Self supporting machine (gripper systems)
- Partial face excavation with roadheader boom
- Muck discharge through pre-shaft

17

Reasons for a Mechanized Approach | General

- Increased level of **Health & Safety**
- Mechanical excavation systems provide greater advantages compared to drill & blast methods for the shaft design
- Cleaner, improved and modern working environment
- An increased level of digital automation
- Generates real-time data acquisition and ready reporting analysis – for full transparency
- Higher logistical efficiency due to greater accuracy in excavation parameters
- Opportunity for concurrent work activities

Process and Involvment for Sucessful Shaft Sinking Projects

Buy in by the owner required

Webinar | Mechanical Shaft Excavation - 22nd January 2020

- Introduction Herrenknecht and Mining
- Overview of Shaft Boring Machines and references
- Boxhole Back Reaming Developments
- Questions?

Herrenknecht Shaft Sinking Machines | Overview

SBM - Shaft Boring Machine

- Geology
- Shaft diameters / depth
- Machine height / weight
- Suspension
- Mucking method
- Rock Support/Lining
- Net excavation

hard rock (~280 MPa) 10 - 12m / ~ 2000 m 60m / 3000t gripping system mechanical rock bolts, shotcrete ~10.5 m/d

*Developped with Rio Tinto – Mine of the Future™

22

Target of Rio Tinto

"Civil Technology" with high mechanization level to be combined with "Mine Development Technology", which has a lower mechanization level

HK Approach

- Excavation System: Combination of full-face cutter head and cutting drum
- Primary Mucking System: Bucket Wheel and Continuous Vertical Conveyor
- Support and Thrust System: Single Gripper and Support Shield
- Rock Support: Permanently Installed Rock Bolters and Shotcrete Robot
- Pre-Excavation Drilling: Permanently installed rock drill (L≈3 m)

23

SBM | Basic Assemby Units

- 1. Cutterhead
- 2. Dust shield
- 3. Rock bolters
- Gripper system 4.
- **5.** Vertical conveyor

https://www.herrenknecht.com/de/produkte/productdetail/shaft-boring-machine-sbm/

VSM - Vertical Shaft Sinking Machine | System Overview

- Shallow shafts (~ 120 m)
- Shaft Ø 4.5 16m
- Blind sinking method
- Soft rock
- Water bearing soils
- Heterogeneous geological conditions
- Hydraulic mucking system
- Pre-cast liner system
- Submerged operation
- Remote controlled
 - High shaft accuracy

25

VSM reference | Ballard Siphon Replacement Project

- 45 meter-deep launch shaft for microtunnelling
- Advance rates of up to 2.6 meters per shift
- High level of worker safety, low noise emission and reduced construction time compared to conventional methods
- Shaft sinking below groundwater possible

Herrenknecht VSM Development | From Submerged to Dry Excavation

	2004 - Kuwait	2004 - Indonesia	2006 - Israel
Shaft depth	30 m	100 m	160 m
Shaft diameter	8 m	2,5 m	6,9 – 9,3 m
Max. excavation rate	3,5 m/shift	2 m/shift	5 m/shift
Material transport	pneumatic	rope excavator	pilot hole

27

SBR - Shaft Boring Roadheader

Geology

soft/medium hard rock (~120 MPa)

- Shaft diameters / depth 8 12m / ~1600 m
- Machine height / weight 40 70m / ~400t
- Suspension Headframe / ropes
- Mucking method
- Rock Support/Lining
- Net excavation

per requirement ~3 m/d

slurry, pneumatic

SBR | Built-In Safety

Location of workplaces and equipment on the SBR

Pneumatic Mucking System (PNM)

- Shotcrete application and rock bolting unit
- Boom with cutting drum and muck intake hopper
- Access during maintenance time only

29

SBR | Excavation and Mining Cycle

https://www.herrenknecht.com/de/produkte/productdetail/shaft -boring-roadheader-sbr/

- Steps of Mining Cycle:
- 1. Cut trench in 12o'clock
- 2. Move boom to center position
- 3. Slew a few degrees clockwise
- 4. Cut next trench
- 5. Repeat until in 12o'clock position
- 6. Extension of the boom
- 7. Re-start of the cutting cycle
- When 1m of the bench is cut, the SBR will be lowered 1m and the mining cycle starts again...
 30

SBR | Pneumatic Mucking System

- Air Flow per. Blower: 7800 m³/h
- Tank Capacity: 4.5 7m³
- Vertical Distance: 25 m
- Number of Blowers: 1 3

https://www.herrenknecht.com/de/produkte/productdetail/shaft -boring-roadheader-sbr/

SBR| ReferencesMI-003 & MI-004BHP Jansen Project Overview

- Potash mine in Canada
- DMC contractor
- Blind shafts for Service and Production
- Shaft depth up to 1,005m,
- Diameter between 8-12m
- Lining: shotcrete, cast in place and bolt & mesh
- 2 x SBR
- Geology: medium hard rock (~120 MPa)
- Frozen ground up to 700m depth

SBR | Jansen | Rock Support / Lining

Initially planned rock support: Screen mesh support in combination with shotcrete

https://www.herrenknecht.com/de/produkte/productdetail/shaft-boring-roadheader-sbr/

33

SBR | Jansen | Rock Support / Lining

Actual rock support: Fibre reinforced concrete cast in place using shaft forms

- Rock support in the Blairmore layer (-430 to -480m): Segmental steel lining rings installed with Blairmore Ring Erector.
- **Rock support below -828 m:** PET, geo grid and split set bolts.

SBR | Jansen | Rock Support / Lining Bolt and Mesh

Herrenknecht. Pioneering Underground Technologies

35

SBR | Jansen | Rock Support / Hitches

Thanks to the machines' ability to excavate variable diameters, large/mini hitches were excavated into the shaft wall throughout the length of the shafts to improve liner friction.

The Famous Blairmore Layer of Saskatchewan

the **BLAIRM** RE RING

Saskatchewan's massive potash reserves

discovered in the 1940s, but were inscremible because of a 100-meter layer of underground smill and water called the Blairmore Formation Early attempts to mine the deposits, which are ilmust one kilometer below the surface, were flooded out.

In the early 1960s, the Blarmont Roy provided the key to unlocking the potential of Saskan breaks potash industry. After temporarily fearing the underground water formation, mixers day transfe

the fronen mass a few feet at a time. The cast own sings wen inserted and sealed to create a water-tight wall for the mine shafts. The allowed miners to safely reach depends and return ore to the surface.

The Blairmore Ring has become a symbol of the provision, commitment and perseverance of the many people who developed Saskatchewan's first potash mines. That quirt loves on today is the throusands of people who work to ensure out province remains the world leader in this important industry.

King-rined Ring

SBR | Jansen | Rock support / Blairmore Ring Erector

- Lower Cretaceous Blaimore formation extends over the whole of Southern Saskatchewan
- Innovative Blairmore Ring Erector technology allowed for a fully mechanized installation of 8,35 m ID rings with minimal open wall exposure.
- 16 pieces of tubbing weighing 2 tonne each forming one ring
- Doubled the expected performance for ring installation as planned

SBR | Jansen | Reaching Shaft Bottom

SBR | Jansen | SBR Removal

- Excavation chamber equipment removed and replaced by a support platform
- SBR brought up to the sub-collar
- SBR's support platform connected to the sub-collar with Ø82,5 mm structural strands
- With SBR fully supported by the structural strands and using stabilizers at three elevations, the winch ropes removed from the SBR
- The machine removed from the shaft in five major lifts ranging from 35 t to 90 t.

SBR | Jansen Summary

- The Jansen Potash project has been a proof of the SBR concept and showed that shaft sinking using purely mechanical excavation can safely and efficiently accomplish the BHP vision.
- With a high degree of accuracy and top-level planning, the two shafts at the Jansen Mine demonstrate that mechanical excavation of deep shafts is possible and brings several benefits not achievable by conventional means.

Using the success and lessons learnt from Jansen, the next generation of SBRs are already active and producing at a high level of efficiency with more on their way.

SBR | Second Generation

Shaft Boring Roadheader | References Slavkaliy ordered two SBRs: MI-029/30

- Delivery time 11/12 months after workshop commissioning
- Client: Deilmann-Haniel Dortmund (Redpath group)
- Potash Plant in Nezhinsky, Belarus
- Production of 2 Mio. Tpd of potash in 2024
- Sinking of two shafts with two SBR machines (725m & 698m)

43

SBR | Slavkaliy | Overview First cut, December 11th, 2018

SBR | Slavkaliy | Belarus shaft sinking record.

HERRENKNECHT

DEILMANN-HANIEL

DEILMANN-HANIEL

Schacht/ cruan 1 82,7 m/Honat n/necrs

SBR | Slavkaliy

SBR | Slavkaliy

Shaft Boring Roadheader | References MI-035 & MI-036 DMC UK ordered two SBR for the North Yorkshire Polyhalite Project

- Owner: SIRIUS MINERALS
- Contractor: DMC UK
- Two shafts with two machines
- 1600m depth

48

SBR | Sirius | Project overview

49

SBR | Sirius | Jobsite overview

Production Shaft | MI-36

Service Shaft | MI-35

MTS Shaft | V-006

SBR | Sirius | Grounting Jumbos in the Excavation Chamber

The main functions are:

- Initial grouting program
- Potential probe drilling
- Ground support installation
- The 2 jumbos can be dismantled and operated independently
- WASSARA hammer drills

SBR | Sirius | Workshop Assembly in Schwanau

SBR | Sirius | Site Assembly

Shaft Boring Roadheader | Comparison

	MI-003/04	MI-029/30	MI-035/36
Project Name	Jansen	Slavkaliy Nezhinsky	North Yorkshire Polyhalite
Project Owner	BHP	Slavkaliy	Sirius Minerals PLC
Country	Canada	Belarus	United Kingdom
Client	DMC mining services	Deilmann-Haniel GmbH	DMC UK
Shaft depth "Service Shaft"	1000,0 m	698,0 m	1562,0 m
Shaft depth "Production Shaft"	1000,0 m	726,0 m	1600,0 m
Finished Inner diameter	8,0 m		6,8 m
maximumcutting diameter	12,3 m	10,1 m	10,5 m
Total height SBR	45,0 m	45,0 m	50,0 m
Total weight SBR	380 to	400 to	350 to
Type of mucking method	Pneumatic Mucking System		
Filter system	Dry filter system		
Forzen shaft	yes	yes	no
Tubbing Installation	yes	yes	yes
Ring Erector in excavation chamber	yes	no	yes
Ring Erector on rock support deck	optional	manual	yes
Bolt and Mesh	yes	no	yes
Concrete Liner System	yes	yes	yes

56

SBR | The Path Forward for Herrenknecht SBR's

The future of shaft sinking is moving toward automation while ensuring the highest levels of safety possible. As Herrenknecht we want to ensure the SBR will meet if not exceed our client's expectation and to achieve this:

- 1. Increase simultaneous working processes
- 2. Modular format for individual client customization & quicker delivery times
- 3. Increase machine torque / advance rates
- 4. Capability to mine in harder geologies

Herrenknecht developed the 2nd generation of SBR based on lessons-learned from Jansen:

- More power at the cutting drum
- Better stabilization
- Improved PNM system
- Sheave deck on top

SBC - Shaft Boring Cutterhead

- Geology
- Shaft diameters / depth
- Machine height / weight
- Suspension
- Mucking method
- Rock Support/Lining
- Net excavation

Hard Rock (~200MPa)

8.1 – 8.6m / ~1000 m 35m / 350t

Headframe / Ropes

Slurry

Per. Requirement

~3 - 6m/d

58

Creating System

SBC | Slurry Mucking System

SBE - Shaft Boring ExtensionMachine

- Geology
- Shaft diameters / depth
- Machine height / weight
- Suspension
- Mucking method
- Rock Support/Lining
- Net excavation

Hard Rock (~200MPa) 7.5 – 9.5m / ~3000 m 18m / 350t Gripping System Pilot Hole Rock Bolts, Shotcrete

SBE | Construction Procedure

Technology consists of 3 steps:

- 1. Directional drilling of pilot hole
- 2. Back reaming the pilot hole by Raiseboring
- 3. Extension of the raisebored hole to the final diameter by means of the shaftboring machine

https://www.herrenknecht.com/en/products/productdetail/shaft -boring-extension-machine-sbe/

62

SBE | Overview

SBE | Advance

1. Starting position

T. 101 1000

2. Advance

64

SBE | Assembly and Disassembly

Pre-Sink requirements:

- Required pre-sink depth: 8 –
 10 m
- Pre-sink diameter to match max. gripper stroke
- Cutterhead can be equipped with support structure for assembly

Picture left an example for breakthrough and lifting:

- Before breakthrough the SBE will be attached to the strand jack system.
- Lifting the SBE to surface by use of heavy duty lifting equipment like strand jack cylinders & long steel cables

Conclusion | Shaft Sinking Machines Modular Concepts are Proven and Available!

Mucking Method:

 Pneumatic, Slurry,
 Conveyor Belt or via Prehole

Shaft Wall Support:

- Bolt and mesh, shotcrete, segmental liner
- Either on the bench or above stabilizer

Excavation Unit:

- SBR for medium soft rock
- SBC for hard rock

66

Webinar | Mechanical Shaft Excavation - 22nd January 2020

- Introduction Herrenknecht and Mining
- Overview of Shaft Boring Machines and references
- Boxhole Back Reaming Developments
- Questions?

Boxhole Back Reaming Machine | Combining Technologies for New Applications

BBR – Boxhole Backreaming Machine

BBM | Rapid Production of Shafts and Slot Holes With Small Diameters

- Boring of vertical and inclined shafts in hard rock conditions
- Shaft diameter up to 1.5 m
- Shaft depth up to 70 m

BBM | Setup in Open Drift

71

BBM | Advantages

- System with the highest safety level
 - Good control of falling material and small annular space
 - No exposure to falling rocks
 - Reduction of dust and noise
 - Highly mechanized operation. i.e. pipe installation, muck-removal, machine setup
 - PLC system: high level of control and safety interlocks
 - Accident-free excavation of more than 5.500m

BBR | New concept for creating ore passes and ventilation raises

74

BBR | Customer value

- Allows simultaneous drilling and lining
- Stabilizing shaft with thrust pipes and by steel liner, avoiding collaps of shaft and rework
- Reducing amount of activities in upper level during mine development
- Diameter up to 3.5m, drilling length up to 60m

BBR | Equipment Overview

BBR | Field Trial

Development of one ore pass in German mine

- Pass specifications (Ø 2.8m)
 - Length and angle (to vertical): 22m, 19°
 - Reaming rates up to 1.3m/h (Ø 2.8m)
 - Rock: Gneiss

Webinar | Mechanical Shaft Excavation - 22nd January 2020

- Introduction Herrenknecht and Mining
- Overview of Shaft Boring Machines and references
- Boxhole Back Reaming Developments
- Questions?

Thank you very much for your attention. Please feel free to ask questions or give comments.

PIONEERING UNDERGROUND TECHNOLOGIES

Patrick Rennkamp Product Manager

Herrenknecht AG Schlehenweg 2 77963 Schwanau-Allmannsweier Deutschland Office : +49 7824 302 9920 Cell : +49 151 16346436 Fax: +49 7824 302 4350

rennkamp.patrick@herrenknecht.de

Danny Harquail Project Development Mining for Canada & U.S.A.

Cell: +1 (647) 222-9952

harquail.danny@herrenknecht.com www.herrenknecht.de

References

- Blake Osman "shaft sinking part 2/mucking out", <u>https://www.youtube.com/watch?v=xpehTws0nUc</u>, January 26, 2009
- Canadian Government, Occupational Health & Safety Mining Regulations, 2003 (Regina, Saskatchewan: The Queen Printer)
- Darling, Peter. SME Mining Engineering Handbook; Third Edition (U.S.A.: Society for Mining, Metakkurgy, and Exploration, Inc.)
- Rennkamp, Patrick. Blind Shaft Sinking for BHP Jansen Project, Herrenknecht AG, Schwanau, Germany
- Rousell, Don Herbert, The Blaimore Formation of Southern Saskatchewan, University of British Columbia, April 1956
- Tatiya, Ratan Raj. Surface and Underground Excavations (London, UK: Taylor & Francis Group plc, 2005)

