

Pietro Lunardi

Evolution of design and construction approaches in the field of underground works: from NATM and derived methods to ADECO-RS

Surface and underground works

Difference between costructing on surface and constructing underground

Construction by addition of material

Construction by subtraction of material

On surface works

The ingredients for:

Underground works

DIFFERENCES BETWEEN THE DESIGN OF SURFACE AND UNDERGROUND WORKS

INGREDIENTS	SURFACE WORKS	UNDERGROUND WORKS
<u>MEDIUM</u> (construction material)	•	
ACTION (loads on structures)	•	
REACTION (response in term of stress and strain)	•	
	Determined <i>a priori</i>	O Not predetermined

INGREDENTS IN THE UNDERGROUND WORKS

CHOICE

LITHOTYPE: CALC-SCHIST EXCAVATION DIAMETER: ~ 12 m

MAIN GEOMECHANICAL PARAMETERS

- σ_{gd} = strength of the rockmass = 20 MPa (\cong 200 Kg/cm²)
- σ_f = unconfined compression strength = 86 ÷ 108 MPa (\cong 860 ÷ 1080 Kg/cm²)
- E = elastic modulus = 10000 MPa (≅ 100000 Kg/cm²).

MEASUREMENTS OF CONVERGENCE

6	Monitoring stations
5172	Chainage (m)
1200	Overburden (m)

San San

No. 5÷9 monitoring stations (overburden H = 740+1640 m)

5	7	8	9
4507	5533	5915	6066
740	1400	1530	1640

No. 3+4 monitoring stations (overburden H = 580+590 m)

pseudo-elastic domain

(mm)

350-

300-

250-

200-

150

100

50

0-

0

3	4
2772	3954
580	590

60

30

90 (days)

It must always be remembered that we build for subtraction of material and the Earth's crust is made up of **material** that is subject to stress fields of gravitative, lithostatic and tectonic nature and which must therefore be considered a "living thing", that tends to deform as a reaction to excavation and therefore generate a Deformation Response which must always be the focus of any designer of underground works.

P. Lunardi – Muir Wood Lecture 2015

PREROGATIVE od the Deformation Response

Evolution as a function of the boundary conditions

2

R

Central role in the design

Reaction = Deformation Response

FUNDAMENTAL PREROGATIVE OF THE DEFORMATION RESPONSE

ARCH EFFECT = CHANNELLING OF THE STRESSES

Stress field in the ground around a tunnel in progress

Bi-dimensional model

Three-dimensional model

The position of the channeling of stresses around the cavity is conditioned by the strength of the ground

ARCH EFFECT

The Deformation Response is the SPY of the ARCH EFFECT mobilization What is the ARCH EFFECT ?

Elastic domain Arch effect: natural Deformation Response: almost nothing

The Deformation Response is the SPY of the ARCH EFFECT mobilization What is the ARCH EFFECT ?

Elastic-plastic domain Arch effect: deviated Deformation Response: not negligible

The Deformation Response is the SPY of the ARCH EFFECT mobilization What is the ARCH EFFECT ?

Failure domain Arch effect: nil Deformation Response: collapse

The Deformation Response is the SPY of the ARCH EFFECT mobilization

PREROGATIVE OF THE DEFORMATION RESPONSE

2 It evolves in function of the type of ground, the intensity of the stress field and the advance speed V

Evolution of the Deformation Response as a function of the stress field intensity

In case of homogeneous soil, when $\sigma_3 \rightarrow 0$ due to the face advance, only varying the lythostatic overload or the stress field DR can develop in domain.....

 $\sigma_{nat} = \gamma H$

 $\sigma_1 = 2\gamma H$

(Deformation Response in elastic domain)

(Deformation Response in elasto-plastic domain) (Deformation Response in failure domain)

PREROGATIVE OF THE DEFORMATION RESPONSE

Central role of the Deformation Response in the design

Therefore designing an underground work means to analyze and control the expected Deformation Response.

APPROACHES OF THE PAST (NATM AND DERIVED METHODS)

DESIGN AND CONSTRUCTION

Deformation Response

How the **Deformation Response** was analysed and controlled in the past and how it is analysed and controlled today ?

Approaches of the past (NATM and derived methods

(1950 ÷ 1980)

Modern approaches Analysis of COntrolled DEformations In Rocks and Soils (ADECO-RS)

since 1980

ACCORDIND TO THE APPROACHES OF THE PAST

- ANALYSIS (theoretical prediction of the <u>expected</u> deformation response): referred only to the geomechanical classifications
 - MODEL SELECTION : bidimensional models
 - DEFORMATION RESPONSE: 1 component (convergence of the cavity)
- **CONTROL** (selection of the excavation system and of the instruments to control the Deformation Response):
 - operations only downstream of the excavation face
 - advancement after partitioning the excavaton face)

ANALYSIS
CONTROLof the Deformation Response according to the approaches
of the past based on geomechanical classifications

ANALYSIS CONTROL

of the **Deformation Response** according to the approaches of the past based on the convergence alone and the advancement after partitioning the excavation face and stabilisation operations only downstream of the face itself

Expected Deformation Response in domain: Approaches of the past NATM and derived methods

They use roof bolts steel ribs shotcrete

They partition the excavation face

They use roof bolts steel ribs shotcrete provisional invert

of the expected **Deformation Response** according to the approaches of the past

To stabilise the face they partitioned it

ANALYSIS

CONTROL

SEZIONI TIPO DI STABILIZZAZIONE ATTIVA PER GALLERIA Ø ~10.00m.

CLASSI DI ROCCIA	1	I	m	N	v	VI
SECTION TYPES		\square	No.	- Contraction of the second se		

of the expected **Deformation Response** according to the approaches of the past

To stabilize the cavity they use only bolts, steel ribs and shotcrete

MODERN DESIGN AND CONSTRUCTION APPROACHES (ADECO-RS)

Deformation Response

How the **Deformation Response** was analysed and controlled in the past and how it is analysed and controlled today ?

Approaches of the past (NATM and derived methods

(1950 ÷ 1980)

Modern approaches Analysis of COntrolled DEformations In Rocks and Soils (ADECO-RS)

since 1980

Approch according to ADECO-RS

- ANALYSIS (theoretical prediction of the <u>expected</u> deformation response): developed through 3D numerical calculation and triaxial extrusion tests in laboratory
 - MODEL SELECTION: three-dimensional models
 - DEFORMATION RESPONSE: **3 components**, extrusion, preconcergence and convergence
- CONTROL (selection of the excavation system and of the instruments to control the <u>expected</u> Deformation Response):
 - operations upstream and downstream of the excavation face
 - full face advancement

ANALYSIS of the expected Deformation Response according to ADECO-RS

Having chosen a three-dimensional model, ADECO-RS attaches priority to the expected Deformation Response of the excavation face

Expected Deformation Response in domain: Modern approaches (ADECO-RS)

ANALYSIS of the expected Deformation Response according to ADECO-RS

ADECO-RS considers as fundamental Deformation Response that of the core-face, therefore has to consider NEW REFERENCES

Vasto tunnel

XXXXSOJL

RESEARCH ON THE DEFORMATION RESPONSE DEVELOPED THROUGH THREE STAGES

(it lasted more than 30 years, on over 1,000 km of tunnels constructed and tens of thousands of excavation faces)

1st stage: in terms of analysis SYSTEMATIC OBSERVATION OF THE DEFORMATION BEHAVIOUR OF THE CORE-FACE AND NOT JUST OF THE CAVITY

2nd stage: in terms of analysis VERIFICATION OF THE EXISTENCE OF CONNECTIONS BETWEEN THE DEFORMATION BEHAVIOUR OF THE CORE-FACE AND OF THE CAVITY

3rd stage: in terms of control

VERIFICATION OF HOW THE DEFORMATION RESPONSE OF THE CAVITY CAN BE CONTROLLED BY ADJUSTING THE RIGIDITY OF THE CORE-FACE

ANALYSIS of the Deformation Response according to ADECO-RS

EXPECTED DEFORMATION — How to study it during the design stage?

Numerical calculation

Experimentation on a reduced scale in the laboratory

ANALYSIS of the Deformation Response according to ADECO-RS

CASERTA - FOGGIA RAILWAY LINE - "S. VITALE" TUNNEL (year 1990)

Geological profile

CASERTA-FOGGIA RAILWAY LINE – SAN VITALE TUNNEL (1990)

CASERTA-FOGGIA RAILWAY LINE – SAN VITALE TUNNEL (1990)

Partitioned face

Full face

Result: face stopped for four years

Result: advance rate= 1.5 m/day of completed tunnel

Nes XX

LINEA FERROVIARIA ANCONA - BARI - GALLERIA 'VASTO' (anno 1991)

ARGILLE LIMOSE: caratteristiche geotecniche e risultati prove di estrusione in cella triassiale

ANCONA-BARI RAILWAY LINE – VASTO TUNNEL (1991)

Ground: silty clay c' = 0,02 MPa, $\phi = 24^{\circ}$ Overburden: 0 \div 150 m

ANCONA-BARI RAILWAY LINE – VASTO TUNNEL (1991)

Partitioned face

Result: the unstoppable extrusion of the core-face makes it impossibilie to continue advancement

Result: advance rate= 1.5 m/day of completed tunnel

CASERTA-FOGGIA RAILWAY LINE – SAN VITALE TUNNEL (1990)

RESEARCH FINDINGS

- there is a strict correlation between the extrusive behaviour of the tunnel's core-face and what occurs downstream the same, in the cavity;
- the extrusive behaviour of the core-face always and inevitably influences the behaviour of the cavity;
- controlling the extrusive behaviour of the core-face also controls the deformation behaviour of the cavity;
- The role of convergence results therefore reduced as the last stage of Deformation Response under excavation action, which begins upstream the excavation face from the extrusive behaviour of the core-face.